PJ31: Ethernet over OTN technology
- 400Gigabit Ethernet -LANPHY transmission technology etc…

PJ32: Multi-Technology Transport Network control technology
- Multi Layer/ Multi Domain network control technology
- SDTN (Software Defined Transport Network) etc…

Testing/ Demonstration

1. World’s First Successful Demonstration of Multi-Vendor Equipment Interoperability in Transmitting 100 Gigabit Ethernet Signals over OTN in Dec. 2011 (PJ31)
 ◆ OTN network interoperability field trial including 90 km optical fiber transmission had been demonstrated with multi-vendors for OTU4 interface carrying 100 Gigabit Ethernet signal.
 - 4 participants: Anritsu, Fujitsu, NEC, Hitachi

2. Successful Remote Control of Industrial Robot by Employing SDN-based Optical Network and Cloud/Edge Computing Technology at iPOP2016 (PJ32)
 ◆ Open demonstration of the optimized remote control of industrial robot by employing SDN-based optical network and cloud/edge computing technology (Figure 1).
 - Configuring a traffic flow across the several transport network domains and a virtual machine creation on the edge compute node.
 - Edge node assists a robot to reduce latency and minimize the data traffic volume.
 - 11 participants.
 - KDDI Research, Mitsubishi Electric, Fujitsu, NICT, Keio University; WG members
 - NTT Communications, RedHat, OA Laboratory, UT Dallas, TOYO Corp., IXIA

Key Technologies
A) SDN orchestrator (OdenOS) by KDDI Research
B) DC/Cloud controller (OpenStack, virtual machine) by NTT Communications and RedHat
C) 100Gb/s-based WDM equipment by Mitsubishi Electric
D) 100Gb/s-class packet optical transport equipment by Fujitsu
E) Elastic optical access network equipment by Keio University
F) Burst mode optical amplifier by NICT
G) 10G-based Layer1 switch by OA Laboratory
H) Industrial robot system by UT Dallas and SwRI
I) Integrated, vendor-independent test automation system by TOYO Corp.
J) Traffic generator by IXIA
K) Wavelength-Selective Switch by Furukawa Electric (Special guest)

Figure 1 iPOP2016 Showcase Network and Key Technologies.

You can watch the demo movie on Kei-han-na OpenLab YouTube channel.

Standardization
◆ One of the over clock mapping of 10G Base-R into ODU2e described in G.Sup43 was promoted to the client signal of OTU4 as a document of Revised G.709 in December 2009.
◆ RFC 6205 “Generalized Labels for Lambda-Switch-Capable Label Switching Routers” in March 2011
Established to promote effective use of the Kei-han-na Open Info-Communication Laboratory by encouraging research and development in the related research field of the laboratory through collaboration between industry, academia and government, and to develop new technologies, human resources and new industries, thereby fulfilling the Kansai region's role in developing the world's leading ICT economy and revitalizing the Kansai economy.

Organization

- **General Assembly of the Council**
 - Chief director: Masayuki MATSUSHITA (Panasonic Corporation)

- **Board of Directors**

- **Operation and Research Committee**
 - Planning and Public Relation Subcommittee
 - IoT Networking Infrastructure Subcommittee
 - Interoperability Working Group
 - Universal Communication Subcommittee
 - Ubiquitous Network Robot Working Group
 - Visual Communication Working Group
 - Meteorological Radar Working Group
 - Global Communication Working Group

Activities

- **Seminar/Workshop**
 - Subcommittee Workshop
 - Seminar: Visual communication for medical conference

- **Symposium**
 - Panel discussion
 - Exhibition

Website

- **Website** URL: http://www.khn-openlab.jp/en/
- **Kei-han-na OpenLab YouTube Channel** URL: https://www.youtube.com/channel/UCx4GMZCaascVMbYFhUulDuw